UNIVERSITY CEU SAN PABLO SCHOOL OF PHARMACY DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY

PROBLEMS OF PHYSICAL CHEMISTRY

2018-2019

LESSON 5

13.Consider the equilibrium: $C_{2}H_{6}(g) \stackrel{\neg}{\leftarrow} C_{2}H_{4}(g) + H_{2}(g)$

 C_2H_6 is introduced into a vessel at 1000 K and 1 atm pressure. At equilibrium, the system has a 26 mol% C_2H_4 and 48 mol% of C_2H_6 . Calculate:

- **a**) K_{P}^{0} at 1000 K.
- **b**) K_{P}^{0} at 298 K, knowing that $\Delta H^{\circ} = 137 \text{ kJ} \cdot \text{mol}^{-1}$, not modifying the value in the temperature range considered
- c) ΔG° at 298 K.

Data: $R = 0.082 \text{ l} \cdot \text{atm} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 1.987 \text{ cal} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.314 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

14. In a particular reaction, we have studied the dependence of the equilibrium constant with temperature, yielding the following equation, considering Joules the units for energy:

$$\ln K = 23.78 + \frac{3407.54}{T}$$

Calculate for this reaction the value of:

- a) ΔH^{o}
- **b**) ΔS^{o}
- c) ΔG° at 35 °C

Data: $R = 0.082 \text{ l} \cdot \text{atm} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 1.987 \text{ cal} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.314 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

15,. 0.1 moles of acetic acid, K_a is $1.75 \cdot 10^{-5}$, are dissolved in 1 litre of:

- a) water.
- **b**) 0.005m-KCl solution.
- c) 0.005m-MgCl₂ solution.
- **d**) 1m-KCl solution.

Determine the degree of dissociation of acetic acid in each solution, commenting on the results.

Data: Mean ionic activity coefficients for KCl solutions

m / (mol·kg ⁻¹)	0.01	0.05	0.1	0.5	1.0
γ_{\pm} (KCl)	0.910	0.815	0.769	0.651	0.606